

BIOMETHANE INDUSTRIAL PARTNERSHIP

BIOGENIC CO2 THE ROLE OF THE BIOMETHANE INDUSTRY IN SATISFYING A GROWING DEMAND

Webinar 9th of April 2024 // TASK FORCE 4.1

Welcome!

0				8
	Q&A		×	
	All questions (1) My	questions (1)		
	Jack Barker 2:34:08 PM When is the next webinar?	口 Con nent 1		
	Type your question here			
Audio Settings A	Raise Hand			Leave Meeting

Practical information

- This webinar will be recorded and made available online afterwards
- You are very much welcome to submit questions in the Q&A section, which you can find at the bottom of the screen
- Like a question? Upvote the question by clicking the thumbs up icon!
- You will receive the slides after the webinar via email

Meet today's speakers

Grazia Vascello BIP secretariat

Julian Beatty Nova Q

Kees van der Leun Common Futures

Leo Gray Common Futures

Marco Centurioni STX Group

Tapio Vehmas Carbonaide

Angelica Cortinovis Nippon Gases

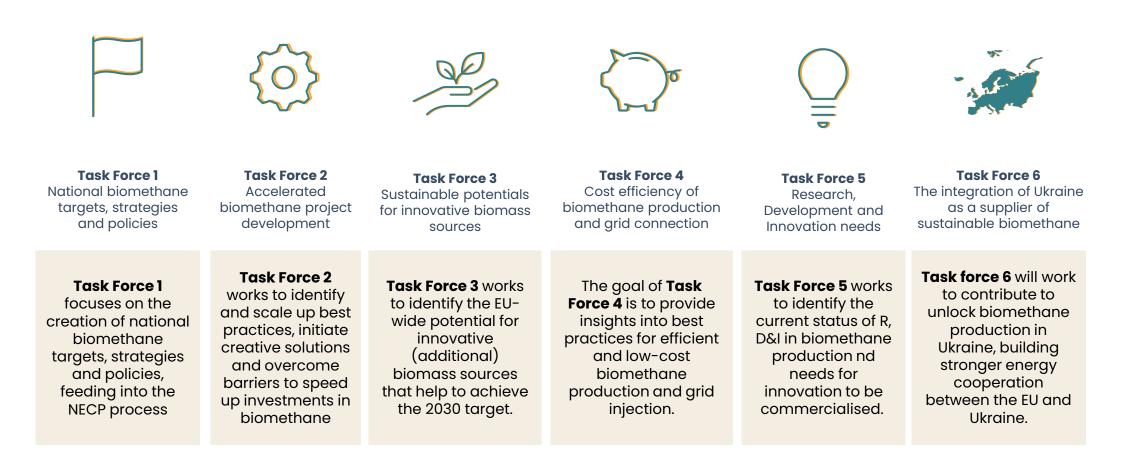
Matthías Ólafsson Methanol Institute

The Biomethane Industrial Partnership

The launch of the BIP by EVP Timmermans and Commissioner Simson on the 28 of September during the European Sustainable Energy Week. The Commission's **REPowerEU plan** set the target of **35 BCM** of **biomethane** by **2030**.

A new **Biomethane Industrial Partnership** (BIP) was established upon REPowerEU plan to 'support the achievement of the target and create the preconditions for a further ramp up towards 2050'. The partnership is formed by stakeholders involved in the biomethane sector, including the EC and MS.

Scaling up the biomethane production is vital because of:


1. the **need to reduce European dependency** on natural gas imports from **Russia**;

2. the high energy prices;

3. the aggravation of the **climate crisis**.

Meet the BIP Task Forces

Identifying and facilitating ways to decrease the cost of biomethane production and grid connection

Today's focus	be	e goal of Task Force 4 is to provide insights into best practices for efficient and low-cost biomethane production and grid injection. 4.3 4.4 4.5 4.6 5						
4.1	4.2		4.3		4.4		4.5	4.6
Business case optimization	Production technology and operating costs		Consumer guide based on 4.2.		Grid injection optimization and reinforcement		Advantages and barriers of standardized product offering	Tour MS showcasing best practices with all Task Forces

© Biomethane Industrial Partnership 2024

Use the Q&A section to submit your questions
Don't forget to upvote your preferred questions!

Presentation of the study

(~~)

Julian Beatty, Managing Director, Nova Q

and the state of the state of the state of the

Kees van der Leun, Managing Director, Common Futures

Leo Gray, Consultant, Common Futures

IP Europe

BIOMETHANE INDUSTRIAL PARTNERSHIP

BIOGENIC CO₂: THE ROLE OF THE BIOMETHANE INDUSTRY IN SATISFYING A GROWING DEMAND

APRIL 2024 // PREPARED BY TASK FORCE 4.1 OF BIP EUROPE

Workshop and study to better understand the potential role of biomethane in satisfying CO₂ demand

Task Force 4 Cost efficiency of biomethane production and grid connection **Task Force 4.1** focuses on biomethane business case optimisation through the valorisation of its co-products, including bioCO₂.

Workshop facilitated by Common Futures to gather, discuss, and interpret insights from contributing parties

-		
	<u> </u>	

Literature study to gather most recent public insights.

organisations across the biomethane supply chain contributed to developing the report.

The study will be available today for download in **bip-europe.eu**

Study rationale: biomethane can be more than a renewable fuel source

- Biomethane production gives us
 - A storable & transportable renewable energy source
 - A natural fertilizer (digestate)
 - Biogenic CO₂

Biogenic CO₂ has been widely overlooked

What is biogenic CO₂?

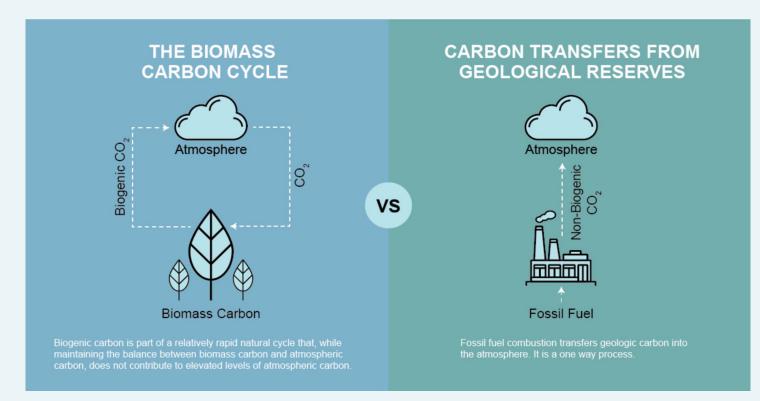
Why bioCO₂ from biomethane?

How can bioCO₂ from biomethane be used?

03.

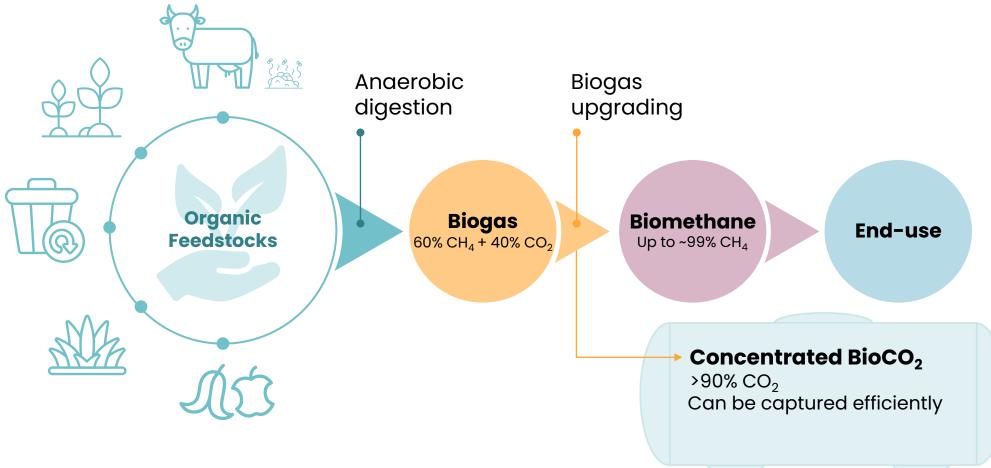
9

04.


Conclusions

Introduction to bioCO₂

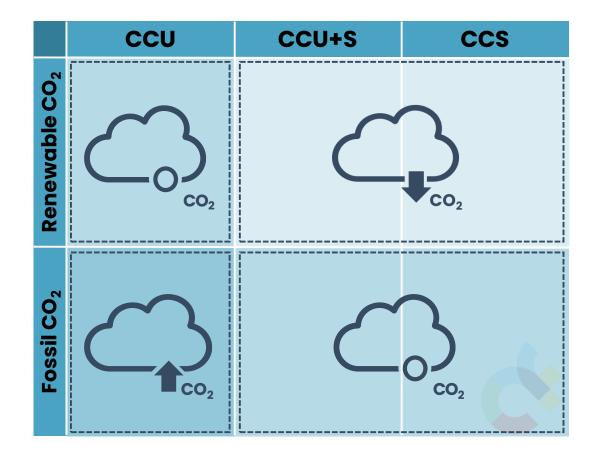
Biogenic CO₂ is a renewable form of CO₂


Biogenic CO_2 (bio CO_2) is short cycle CO_2 released from natural biological processes

Introduction to bioCO₂

Biomethane production is a readily available source of bioCO₂

Introduction to bioCO₂

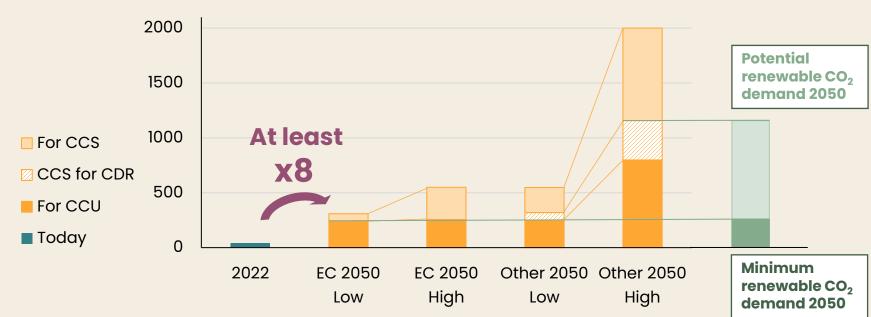


Different uses of bioCO₂ have different impacts on atmospheric CO₂ levels

What do you do with captured CO₂?

CCU: Carbon Capture and Utilisation **CCU+S:** Carbon Capture Utilisation and Storage **CCS:** Carbon Capture and Storage

CDR: Carbon Dioxide Removal



BioCO₂ from biomethane

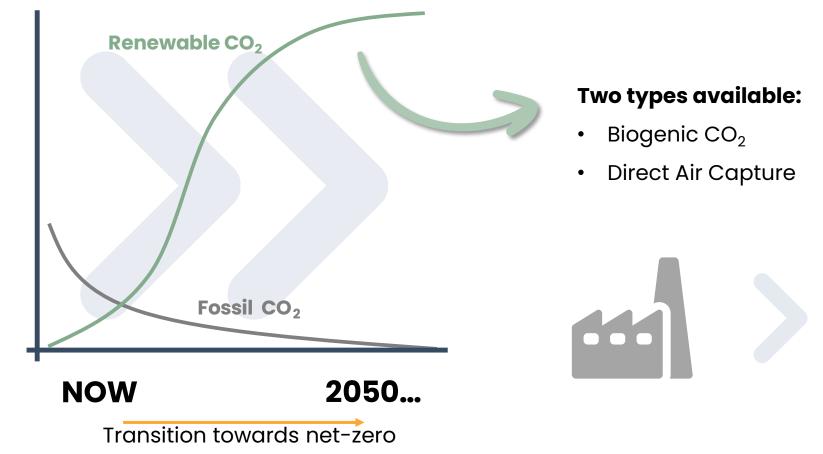
EU demand for CO₂ estimated to grow to hundreds of Mt/year by 2050

Growth in EU CO₂ demand from 2022-2050 (Mt/yr)

 Current EU CO₂ demand: ~40 Mt/yr.

- New processes will increase 2050 demand, e.g:
 - E-fuels: 150-800 Mt CO₂/yr

• CDR: 70-360 Mt CO₂/yr


Figure 2. The potential demand for CO₂ in the EU in 2050 split between CCU, CDR, and CCS, and between the modelling for the European Commission and other modelling studies.

BioCO₂ from biomethane

CO₂ is mostly captured from fossil fuels today, so a switch to renewable CO₂ is needed

BioCO₂ from biomethane

Biomethane production can be a cost-effective source of renewable CO₂ today and in the future

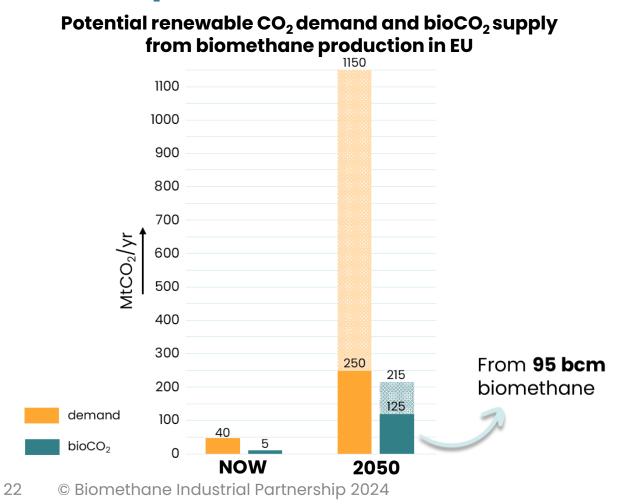
Direct Air Capture

- · Can be located anywhere
- Low CO₂ concentration, high cost
- Consumes renewable electricity

Biogenic CO₂

Costs change with

- Volume
- Concentration
- Availability of waste heat


	CO ₂ source	Concentration (% CO ₂)	Capture cost (€/t CO₂)	Potential bioCO ₂ supply 2050
€	Bioethanol	98-100	25-35	-
€	Biomethane	96-100	25-90	+
ۥ	Paper and pulp	14-30	40-92	+
ۥ	Waste to energy	6-12	60-80	+
€	Biomass for power & heat	10-12	100-200	++
€	Direct Air Capture	0.04	120-540	++

Biomethane has low carbon capture cost, as CO₂ separation is part of the existing process

Table. Characteristics of different renewable CO₂ sources.

BioCO₂ captured from biomethane production can produce 125 – 215 Mt bioCO₂ in 2050

 35 bcm biomethane in 2030: ~46 Mt bioCO₂

What is biogenic CO₂?

Why bioCO₂ from biomethane?

How can bioCO₂ from biomethane be used?

Conclusions

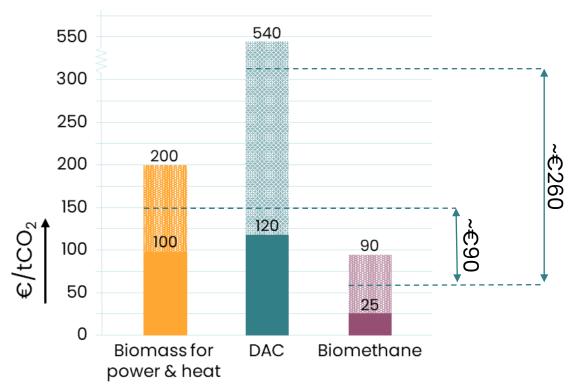
End-uses of bioCO₂

BioCO₂ has many applications; the preferred end-use is influence by different factors

	Cost of alternatives		On-site	Off-site	
	Cost of logistics	Avoiding CO ₂ emissions	Methanation with H ₂ (CCU)	E-fuel production (& other CCU) Use in long lived products (CCU+S)	
食	Cost of electricity	emissions	(000)		
	Purity requirements	Negative emissions/ Storing CO ₂	N/A	CO ₂ storage (CCS)	
	Evaluation of CDR	emissions			

End-uses of bioCO₂

Logistics: bioCO₂ from biomethane production requires reliable, low-cost transport


- Biomethane plants are typically remote
 - Truck transport most likely

€0.1-0.15/tCO₂/km €40-60/tCO₂ for a distance of 200 km*

 Additional transport costs for bioCO₂ from biomethane production must be lower than the capture cost advantage (€90-260/tCO₂)

Capture cost of large potential renewable CO₂ sources

End-uses of bioCO₂

Not possible

today

BioCO₂ in the market; how can producers valorise this useful by-product?

As part of the biomethane process	As its own new product				
Lower the carbon intensity of biomethane production through CDR from bioCO ₂ .	Sell bioCO ₂ directly on the voluntary market.	Sell bioCO 2 directly on the compliance market	Sell CDR from bioCO ₂ with permanent storage on the voluntary market	Sell CDR from bioCO ₂ with permanent storage on the compliance market	

26 © Biomethane Industrial Partnership 2024

What is biogenic CO_2 ? Why bioCO₂ from biomethane?

How can bioCO₂ from biomethane be used?

Conclusions

Conclusions

Biomethane production provides a valuable and much needed source of cost-effective renewable CO₂

The demand for CO₂ is expected to rise significantly, and it must be renewable

Biomethane production is an **existing**, **cost-effective source of bioCO**₂

3

BioCO₂ is crucial to **facilitate important new processes**

- Hydrogen economy: E-fuel production
- **Negative emissions**: Carbon Dioxide Removals

4

Several key factors must be considered to determine how best to valorise bioCO₂ e.g. cost of logistics

Contributors highlighted that **supporting policy & certification are a crucial factor in realising this potential**

Use the Q&A section to submit your questions
Don't forget to upvote your preferred questions!

....

and the state of the state

(-)

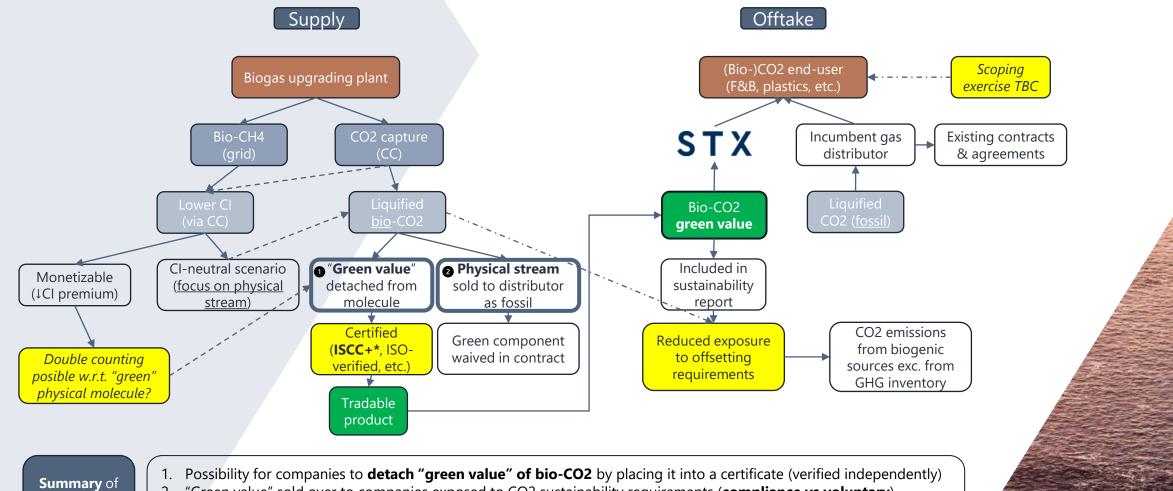
Marco Centurioni

Business Development Manager STX Group

P Europe

STX

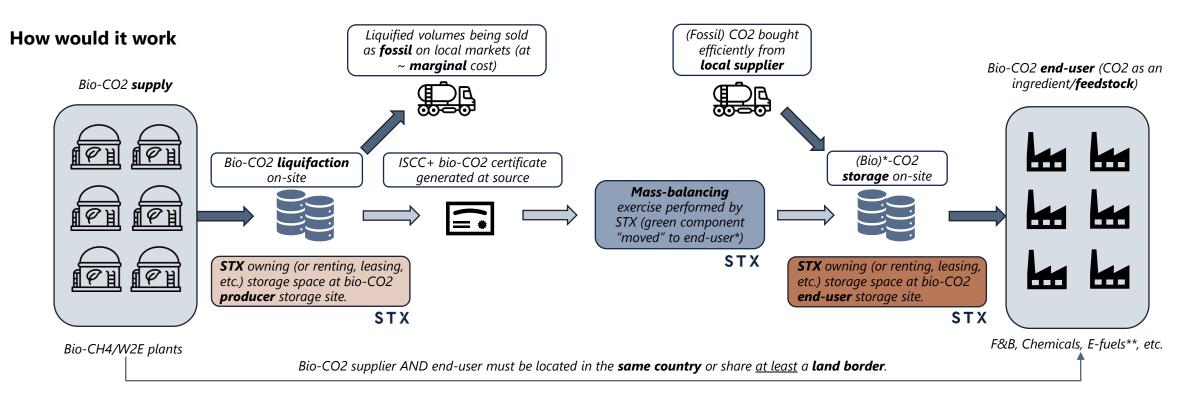
Biomethane Industrial Partnership


Bio-CO2 Webinar

9 April 2024

Marco Centurioni

STX A potential certificate recognizing the bio-CO2 "green value"


- 2. "Green value" sold over to companies exposed to CO2 sustainability requirements (**compliance vs voluntary**)
- 3. Ongoing efforts to **test this value proposition** with verifiers (compliance) and with end-buyers (voluntary)
 - 4. Significant opportunity if the above structure could be adapted to RFNBOs trade dimension

1/10/2022

intended

structure

Possibilities for bio-CO2 volumes mass-balancing under ISCC+

Upstream

The above structure allows bio-CO2 suppliers to sell physical streams <u>at cost</u> locally, while gaining a premium from the "green component" that is transferred via certificate to the end-user.

Midstream

The midstream segment is significantly simplified → limited need to build any transport/logistics infrastructure to match S&D. <u>Need to</u> encounter a local off-taker (at supply) and find a cheap CO2 source close to enduser.

Downstream

End-user rents out to STX (part of) their storage facility and via mass-balancing of bio-CO2 volumes can source fossil volumes (cheaply) and **receive the green component as accompanying certification** (ISCC+*). Use the Q&A section to submit your questions
Don't forget to upvote your preferred questions!

HE PRES

....

 $(\)$

Tapio Vehmas CEO

-

the low through the low

BIP Europe

Carbonaide

CO2 utilisation and storage in precast concrete

- Carbonaide provides a carbon dioxide (CO2) reuse and storage technology (CCUS) for concrete industry.
- In CCUS process, concrete is cured under specified CO2 atmosphere that enables formation of carbonate minerals.
- The process improves mechanical properties of concrete and enables cost savings.
- CO2 is stored permanently as carbonate minerals which decreases the carbon footprint of the concrete.
- The process enables new supplementary cementitious materials due to carbonate formation and further improves the cost efficiency.

Biogas based CO₂ is a fit for concrete

- Carbonaide's process does not have limitation for CO2 purity.
- Upgraded biogas has naturally high CO₂ concentration that enables liquification without further processing.
- Biogas CO₂ is fully biogenic that enables production of high-value carbon dioxide removal.
- Both parties gain economic and environmental benefits.
 - \circ Concrete industry utilises less cement.
 - $\,\circ\,$ Biogas stores CO2 and generates removals.

Large scale, delocalized, nonutilized opportunity

- Concrete provides a 1,5 billion tonnes annual technical carbon sink.
- The capacity is delocalized as the typical plant can mineralize 5 000 –10 000 tonnes per year.
- The plants exist almost everywhere as the transportation distances of the ready products are minimized.
- The sink potential is currently non-used.

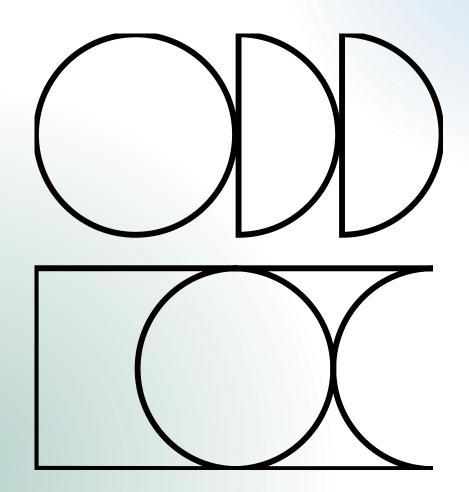
"We are the first generation to feel the impact of climate change and the last to be able to do anything about it."

-Barack Obama-

Tapio Vehmas Carbonaide <u>tapio.vehmas@carbonaide.com</u> +358 40 591 1589

Use the Q&A section to submit your questions
Don't forget to upvote your preferred questions!

11.05



(-)

Angelica Cortinovis Renewable Energy Business Manager Nippon Gases

P Europe

Biogenic CO2 : perspectives from an Industrial Gases company

Nippon Gases Confidential

41

Nippon Gases is part of Nippon Sanso Holdings Corporation the parent company to the Taiyo Nippon Sanso industrial gas business in Japan, the US Matheson Tri-Gas Group, the European Nippon Gases, the Asia/Oceania Regional Group and Thermos Business Group. Our group has over 100 years of experience and boasts a major presence in Japan, Southeast Asia, Australia, the United States, Canada and in Europe.

Nippon Gases, the European company of Nippon Sanso Holdings

Nippon Gases Confidential

Carbon neutral world Our Pillars

Greening Combustion Hydrogen Solutions

CO₂ Capture Circular Economy

Digitalisation

The Gas Professionals

gasworld.com

42

Nippon Gases: Using biogas to drive the Net Zero transition

By Anthony Wright on May 12, 2023 | 🖓 0 | 💷 Translate 🗸

NEWS | BIOGAS

Biogas is rapidly becoming a key player in the ongoing global transition to renewable energy. As the world continues to move away from fossil fuels, the gas is emerging as a reliable, sustainable and cost-effective alternative.

Produced through the anaerobic digestion (AD) of organic matter such as agricultural waste, sewage sludge and food scraps, biogas is generated when microorganisms break down the organic matter and release a mixture of gases, primarily methane and carbon dioxide (CO2).

One of its key benefits is its ability to reduce greenhouse gas emissions. By capturing the methane released during AD and using it as a fuel, biogas projects can significantly reduce emissions to help combat global warming.

The versatility of biogas also lends itself to applications such as electricity generation, for heating power plants, fuelling vehicles and even being injected into natural gas pipelines.

It can also be used to help address waste management challenges, particularly in agricultural and urban areas. By diverting organic waste from landfills and using it for energy production, biogas projects can reduce the volume of waste in landfills and lower associated environmental and public health risks.

These benefits have seen biogas skyrocket in popularity around the world over the past few years. In Europe, biogas production has grown significantly, particularly in Germany, Denmark and Sweden. The US, China and India are also investing heavily in biogas projects, recognising its potential as a sustainable and cost-effective renewable energy source.

This growth has been partially driven by widespread adoption of biogas by leading industrial companies offering clean energy initiatives such as Nippon Gases and its Carbon Neutral World campaign.

Visit carbonneutralworld.com to know more!

SOME STATS

CO2 emissions in the EU in 2022

- 2.700.000 Mt total per year
- 5,8 Mt per capita per year
- 30% below 1990

Demand of merchant CO2 in Europe

- 35-40 Mt per year
- 0,14% of all the CO2 being produced

Data referred to 2022

Its utilization is an **Opportunity**

Its abundance is a global disaster

The Gas Professionals

45

Increasing number of industries capturing or planning to capture their CO2 emissions and making them available for the market

> Increasing number of anaerobic digestion sites producing BIO CO2 also available for the market

BIOGENIC CO2

- Uncertainty
- Availability
- Consumer acceptance
- Reliability

Classification [General]

Great Opportunities Result from Great Challenges.

Nippon Gases Confidential

Classification [General]

YouTube

LinkedIn

info@nippongases.com

nippongases.com

Use the Q&A section to submit your questions
Don't forget to upvote your preferred questions!

HE SPECE

11.05

and an and a state of the

(-)

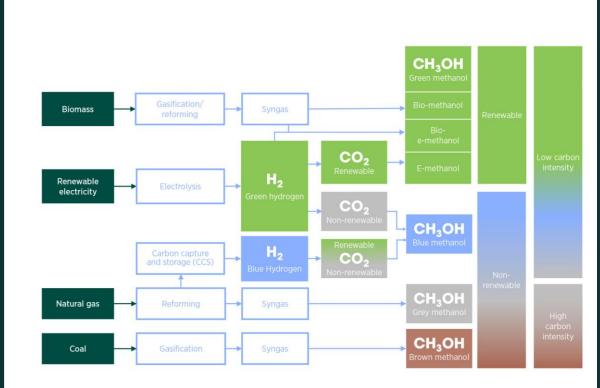
Matthias Ólafsson

Chief EU Representative Methanol Institute

P Europe

www.**methanol**.org

Low Carbon and Net Carbon-Neutral

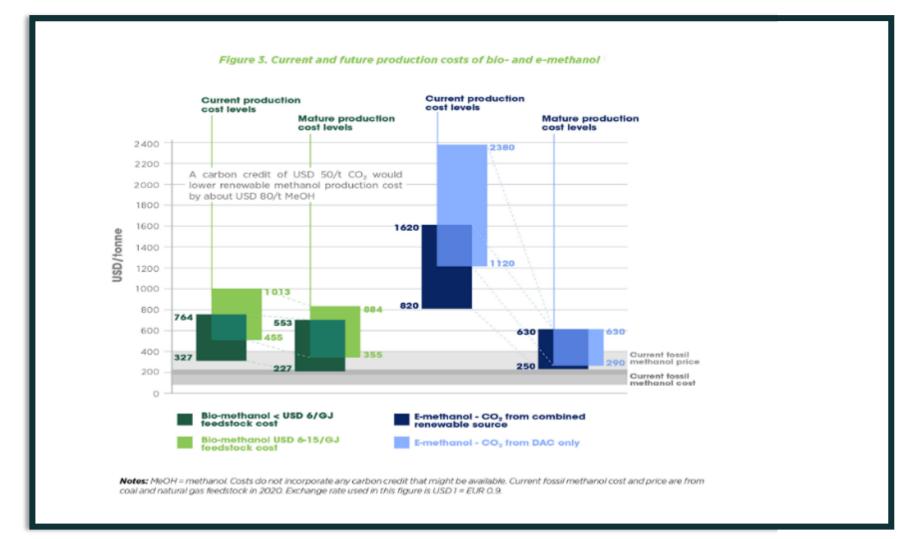


E-Methanol

- Feedstocks: green hydrogen and captured CO2
 - Green hydrogen produced from the electrolysis of water with renewable energy (e.g. solar, wind, geothermal etc.)
 - CO2 from industrial flue gas (e.g. steel, cement, ethanol), biogenic sources, or direct air capture
- E-methanol is a very-low to net carbon-neutral

Bio-methanol

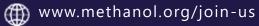
- Feedstocks: Municipal Solid Waste (MSW), Agricultural Waste, Black Liquor, Bio-Methane from wastewater treatment, landfills, or animal husbandry
- Feedstocks can be gasified or anaerobically digested to produce syngas used in methanol production
- Avoided emissions from landfills, incinerators, or dairy farms potentially allow bio-methanol to be a net carbonnegative fuel


Renewable CO₂: from bio-origin and through direct air capture (DAC)

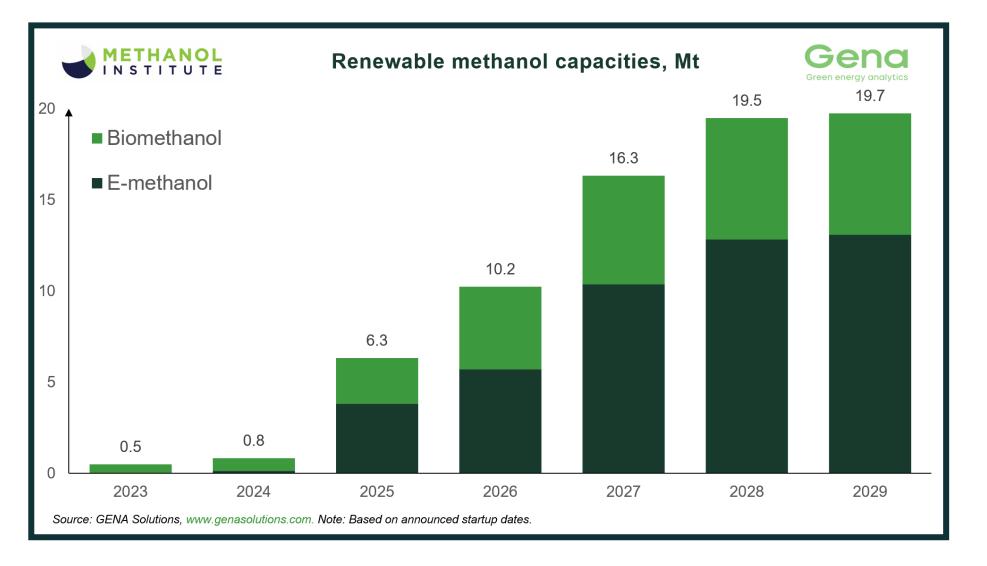
Non-renewable CO2: from fossil origin, industry

While there is not a standard colour code for the different types of methanol production processes; this illustration of various types of methanol according to feedstock and energy sources is an initial proposition that is meant to be a basis for further discussion with stakeholders

Cost of production coming down



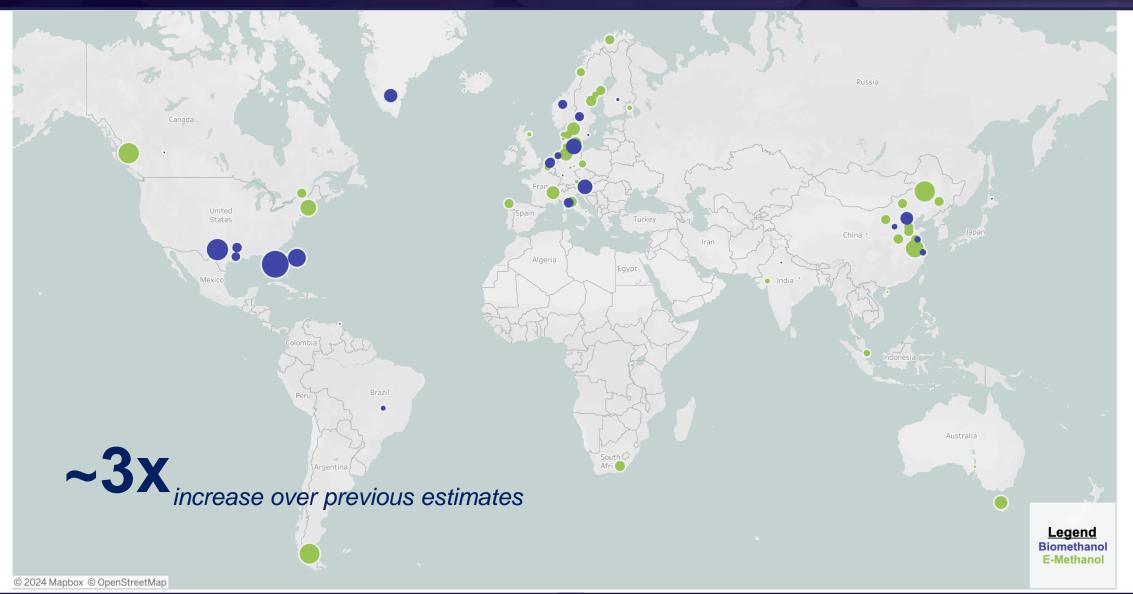
🛈 🗗 오 📾


METHA

NSTITU

F

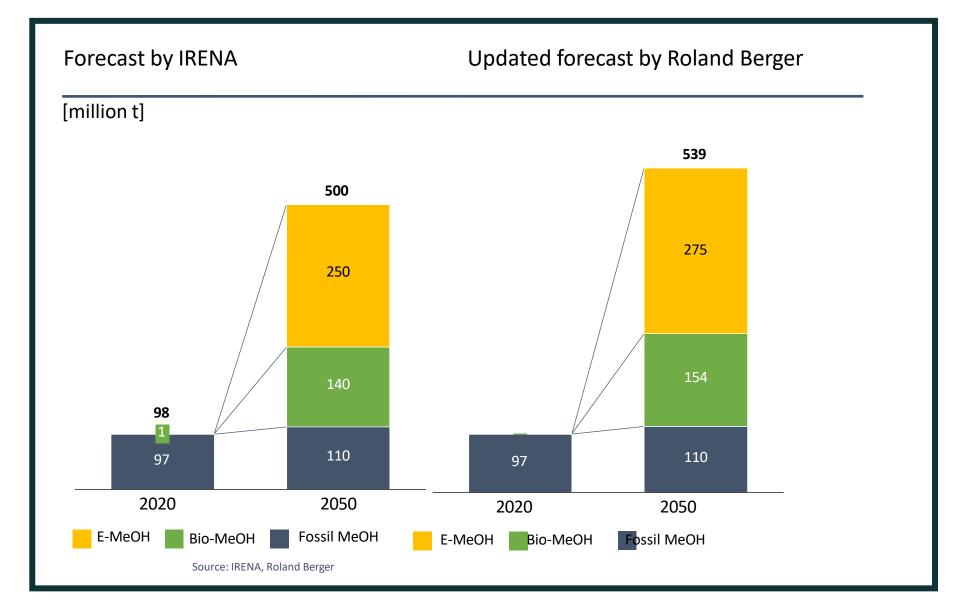
Supply: Near term ramp-up

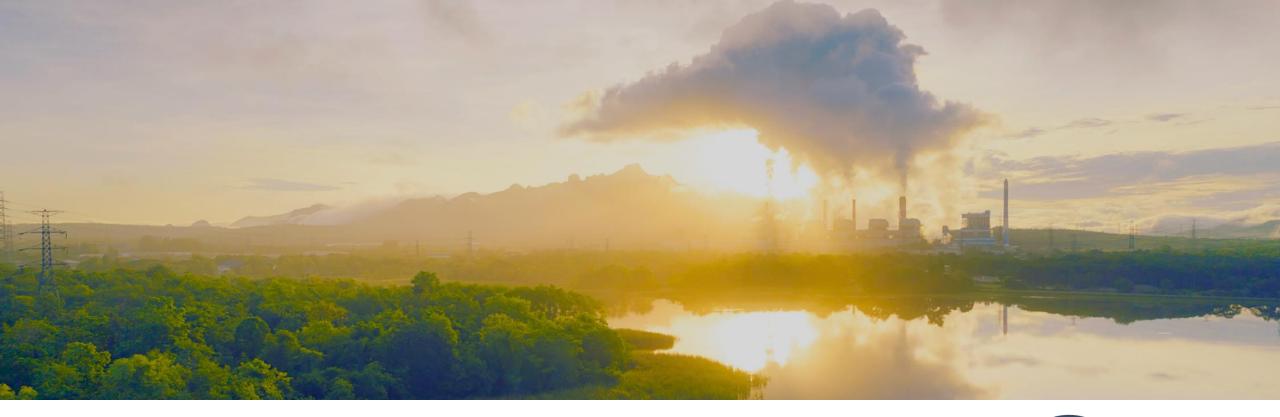

NSTI

Ε

@ www.methanol.org/join-us

Supply: Geographical Distribution




www.methanol.org/join-us

Supply: Long-term Growth

BIOMETHANE INDUSTRIAL PARTNERSHIP

QUESTIONS?	Contact the BIP secretariat <u>secretariat@bip-europe.eu</u>
DOWNLOADS	The study will be available today on the BIP website: <u>www.bip-europe.eu/downloads</u>
MEMBERSHIP	Want to become a BIP member? Sign-up at <u>www.bip-europe.eu/get-involved</u>